skip to main content


Search for: All records

Creators/Authors contains: "Spielman, I. B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A fundamental tenet of quantum mechanics is that measurements change a system’s wavefunction to that most consistent with the measurement outcome, even if no observer is present. Weak measurements produce only limited information about the system, and as a result only minimally change the system’s state. Here, we theoretically and experimentally characterize quantum back-action in atomic Bose-Einstein condensates interacting with a far-from resonant laser beam. We theoretically describe this process using a quantum trajectories approach where the environment measures the scattered light and present a measurement model based on an ideal photodetection mechanism. We experimentally quantify the resulting wavefunction change in terms of the contrast of a Ramsey interferometer and control parasitic effects associated with the measurement process. The observed back-action is in good agreement with our measurement model; this result is a necessary precursor for achieving true quantum back-action limited measurements of quantum gases. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available June 1, 2024
  3. The precise control of direct current (dc) magnetic fields is crucial in a wide range of experimental platforms, from ultracold quantum gases and nuclear magnetic resonance to precision measurements. In each of these cases, the Zeeman effect causes quantum states to shift in energy as a function of the magnetic field. The development of low-noise current sources is essential because electromagnets are the preferred tool to dynamically control the magnetic field. Here, we describe an ultra-low noise bipolar current source using pairs of complementary n- and p-channel metal–oxide–semiconductor field-effect transistors controlled by zero-drift operational amplifiers. Our source has a 90 kHz inherent bandwidth and provides current from −20 to 20 A with noise (0.1 Hz to 100 kHz) of 140 µA at ±20 A. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  4. A majority of ultracold atom experiments utilize resonant absorption imaging techniques to obtain the atomic density. To make well-controlled quantitative measurements, the optical intensity of the probe beam must be precisely calibrated in units of the atomic saturation intensityIsat. In quantum gas experiments, the atomic sample is enclosed in an ultra-high vacuum system that introduces loss and limits optical access; this precludes a direct determination of the intensity. Here, we use quantum coherence to create a robust technique for measuring the probe beam intensity in units ofIsatvia Ramsey interferometry. Our technique characterizes the ac Stark shift of the atomic levels due to an off-resonant probe beam. Furthermore, this technique gives access to the spatial variation of the probe intensity at the location of the atomic cloud. By directly measuring the probe intensity just before the imaging sensor our method in addition yields a direct calibration of imaging system losses as well as the quantum efficiency of the sensor.

     
    more » « less
  5. Abstract We establish a dataset of over 1.6 × 10 4 experimental images of Bose–Einstein condensates containing solitonic excitations to enable machine learning (ML) for many-body physics research. About 33 % of this dataset has manually assigned and carefully curated labels. The remainder is automatically labeled using SolDet—an implementation of a physics-informed ML data analysis framework—consisting of a convolutional-neural-network-based classifier and object detector as well as a statistically motivated physics-informed classifier and a quality metric. This technical note constitutes the definitive reference of the dataset, providing an opportunity for the data science community to develop more sophisticated analysis tools, to further understand nonlinear many-body physics, and even advance cold atom experiments. 
    more » « less
  6. Abstract

    Here we revisit the topic of stationary and propagating solitonic excitations in self-repulsive three-dimensional (3D) Bose–Einstein condensates by quantitatively comparing theoretical analysis and associated numerical computations with our experimental results. Motivated by numerous experimental efforts, including our own herein, we use fully 3D numerical simulations to explore the existence, stability, and evolution dynamics of planar dark solitons. This also allows us to examine their instability-induced decay products including solitonic vortices and vortex rings. In the trapped case and with no adjustable parameters, our numerical findings are in correspondence with experimentally observed coherent structures. Without a longitudinal trap, we identify numerically exact traveling solutions and quantify how their transverse destabilization threshold changes as a function of the solitary wave speed.

     
    more » « less